Rifampicin Protects PC12 Cells from Rotenone-Induced Cytotoxicity by Activating GRP78 via PERK-eIF2α-ATF4 Pathway
نویسندگان
چکیده
Rifampicin has been proposed as a therapeutic candidate for Parkinson's disease (PD). We previously showed that rifampicin was neuroprotective in PD models in vivo and in vitro. However, the molecular mechanisms underlying are not fully elucidated. In this study, using the comprehensive proteomic analysis, we identified that the 78 kDa glucose-regulated protein (GRP78), a hallmark of the unfolded protein response (UPR), was upregulated in rifampicin-treated PC12 cells. Western blot analysis confirmed GRP78 activation. GRP78 functions cytoprotectively in stressed cells, therefore, we hypothesized that GRP78 mediated rifampicin-induced neuroprotection. Using RNA interference, we found that GRP78 gene knockdown significantly attenuated the neuroprotective effects of rifampicin. Next, we examined three UPR transducers, namely, protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol requiring kinase α (IREα) and activating transcription factor 6 (ATF 6), and how they regulated rifampicin-stimulated GRP78 expression. Our results showed that PERK, eukaryotic initiation factor 2α (eIF2α), and activating transcription factor 4 (ATF4) were activated in rifampicin-treated PC12 cells. Silencing the ATF4 gene using RNAi inhibited GRP78 stimulation. Interestingly, we did not detect significant IREα activation, X-box binding protein 1 mRNA splicing, or ATF6 cleavage up to 24 h after rifampicin treatment. Taken together, our data suggested that rifampicin induced GRP78 via the PERK-eIF2α-ATF4 pathway to protect neurons against rotenone-induced cell damage. Targeting molecules in this pathway could be a novel therapeutic approach for PD treatment.
منابع مشابه
Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells.
Porcine circovirus type 2 (PCV2) infection induces autophagy and apoptosis. These cellular responses could be connected with endoplasmic reticulum (ER) stress. It remains unknown if PCV2 induces ER stress and if autophagy or apoptosis is primary to PCV2 infection or secondary responses following ER stress. Here, we demonstrate that PCV2 triggered unfolded protein response (UPR) in PK-15 cells b...
متن کاملJNK Contributes to the Tumorigenic Potential of Human Cholangiocarcinoma Cells through the mTOR Pathway Regulated GRP78 Induction
Less is known about the roles of c-Jun N-terminal kinase (JNK) in cholangiocarcinoma (CCA). Here, we report that JNK exerts its oncogenic action in human CCA cells, partially due to the mammalian target of rapamycin (mTOR) pathway regulated glucose-regulated protein 78 (GRP78) induction. In human CCA cells, the phosphorylation of eukaryotic initiation factor alpha (eIF2α) results in the accumul...
متن کاملmiRNA-1283 Regulates the PERK/ATF4 Pathway in Vascular Injury by Targeting ATF4
BACKGROUND In our previous study, we found significant differences in the mRNA and microRNA (miRNA) levels among hypertensive patients with different degrees of vascular endothelial cells damage. These differences were closely associated with endoplasmic reticulum stress (ERS)-related proteins. Moreover, compared to the control group, the expression of transcription factor activating factor 4 (...
متن کاملSinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2α/ATF4/CHOP pathway.
Sinulariolide, an active compound isolated from the cultured soft coral Sinularia flexibilis, has potent anti-microbial and anti-tumorigenesis effects towards melanoma and bladder cancer cells. In this study, we investigated the effects of sinulariolide on hepatocellular carcinoma (HCC) cell growth and protein expression. Sinulariolide suppressed the proliferation and colony formation of HCC HA...
متن کاملPERK‐eIF2α‐ATF4‐CHOP Signaling Contributes to TNFα‐Induced Vascular Calcification
BACKGROUND Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vasc...
متن کامل